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Summary
Globally, wheat is the most widely grown crop and one of the three most important crops for

human and livestock feed. However, the complex nature of the wheat genome has, until

recently, resulted in a lack of single nucleotide polymorphism (SNP)-based molecular markers of

practical use to wheat breeders. Recently, large numbers of SNP-based wheat markers have been

made available via the use of next-generation sequencing combined with a variety of genotyping

platforms. However, many of these markers and platforms have difficulty distinguishing between

heterozygote and homozygote individuals and are therefore of limited use to wheat breeders

carrying out commercial-scale breeding programmes. To identify exome-based co-dominant

SNP-based assays, which are capable of distinguishing between heterozygotes and homozyg-

otes, we have used targeted re-sequencing of the wheat exome to generate large amounts of

genomic sequences from eight varieties. Using a bioinformatics approach, these sequences have

been used to identify 95 266 putative single nucleotide polymorphisms, of which 10 251 were

classified as being putatively co-dominant. Validation of a subset of these putative co-dominant

markers confirmed that 96% were true polymorphisms and 65% were co-dominant SNP assays.

The new co-dominant markers described here are capable of genotypic classification of a

segregating locus in polyploid wheat and can be used on a variety of genotyping platforms; as

such, they represent a powerful tool for wheat breeders. These markers and related information

have been made publically available on an interactive web-based database to facilitate their use

on genotyping programmes worldwide.

Introduction

Bread wheat (Triticum aestivum) is an allohexaploid (AABBDD)

crop derived from the hybridisation of the diploid genome of

Aegilops tauschii (DD) with the AABB tetraploid genome of

Triticum turgidum (Dubcovsky and Dvorak, 2007). These hybridi-

sation events, the domestication process and the inbreeding

nature of wheat have together resulted in a reduced level of

genetic diversity between cultivated wheat varieties, when

compared with their wild ancestors (Haudry et al., 2007). Wheat

breeders and geneticists require tools to exploit the genetic

diversity available within germplasm collections and carry out

breeding programmes, which utilise this diversity to maximum

effect. Molecular markers enable breeders and geneticists to carry

out this process; however, in allohexaploid wheat, the develop-

ment of molecular markers has, until recently, been problematic

due to the presence of homoeologous and paralogous copies of

the various genes (Kaur et al., 2012). Recent advances in

genotyping platforms have built upon the wealth of data

provided by next-generation sequencing (NGS) technologies to

enable, for the first time, the large-scale identification, validation

and application of molecular markers in wheat breeding pro-

grammes (Berkman et al., 2012; Paux et al., 2011). These

developments have come at a critical time, where the need for

a substantial increase in yields to feed a growing global

population has coincided with reduced genetic gains and

increasing climatic and environmental pressures (Dixon et al.,

2009; Reynolds et al., 2009).

Many of the recently developed genotyping platforms rely on

the identification of single nucleotide polymorphisms (SNPs),

which are polymorphic between different wheat varieties (Paux

et al., 2011). To overcome the various bottlenecks and problems

associated with SNP generation, characterisation and most

importantly validation in wheat, we and others have previously

used NGS-based technology to identify and map relatively large

numbers of gene-based SNP loci (Allen et al., 2011; Akhunov

et al., 2009; Chao et al., 2010). However, these studies used

cDNA and EST sequences and were therefore subject to variation
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in expression of homoeologous and paralogous genes. In

hexaploid wheat, this situation is further aggravated as homo-

eologous and paralogous genes are often silenced or can show

differential spatial and/or temporal expressions (Adams and

Wendel, 2005; Akhunova et al., 2010; Liu et al., 2009). Genomic

DNA is likely to be a more reliable source of putative SNPs;

however, the size of the wheat genome means that sequencing

the whole genome of multiple varieties to the depths required for

successful SNP identification is impractical, time consuming and

costly (Biesecker et al., 2011). To overcome these resource-

associated problems, we have used a recently developed

sequence capture targeted resequencing approach to characte-

rise a significant proportion of the wheat exome (Winfield et al.,

2012). By using a reference collection of the wheat exome as the

basis of our SNP collection, we have been able to sequence and

compare equivalent regions of the wheat genome from several

wheat varieties.

To be fully utilised in breeding programmes, putative SNPs

need to be identified and converted to working assays on a high-

throughput genotyping platform. Recently, several technologies

have revolutionised wheat genotyping: Illumina’s GoldenGate/

Infinium technologies and KBioscience’s KASPar (Akhunov et al.,

2009; Allen et al., 2011). Development of these platforms has

encouraged the widespread uptake of SNP-based genotyping in

wheat; however, both technologies have two significant draw-

backs. Firstly, they require the identification and characterisation

of varietal SNPs among an excess of homoeologous and

paralogous SNPs. Secondly, as both platforms were developed

for diploid species, they have problems with the scoring of varietal

SNPs in polyploid heterozygotes, for instance, F2 and backcross

populations. The detection of heterozygous SNPs in allohexaploid

wheat is dependent on the ability of the system to accurately

discriminate between different call ratios. For ‘dominant’ SNP

assays, which amplify all three homoeologous copies, these

systems are often incapable of distinguishing homozygote (having

a call ratio of 4 : 2) and heterozygote lines (having a call ratio of

5 : 1) (Allen et al., 2011; Paux et al., 2011). In contrast, both

genotyping platforms work well when the SNP is amplified from

just a single homoeologous/paralogous copy. Such SNP assays are

usually referred to as co-dominant SNP assays, that is, they are

capable of differentiating between homozygotes (having a call

ratio of 2 : 0) and heterozygotes (having a call ratio of 1 : 1). As

such, co-dominant SNP assays are preferred markers compared

with dominant SNP assays. Unfortunately, co-dominant SNP

assays usually make up < 20% of the SNP assays generated by

conventional means (Allen et al., 2011). However, careful primer

design can lead to the successful amplification of just one

homoeolog/paralog, but this process is time consuming as the

variable nature of each set of sequences demands a manual

approach to primer design. To overcome this bottleneck, we have

developed a SNP identification pipeline which incorporates a

novel bioinformatics procedure designed to identify putative

co-dominant SNP assays.

The developments described here have led to both the

generation of an extensive set of putative varietal SNPs from

genomic DNA and within this data set the identification of a

subset of putative co-dominant SNPs. The use of an exome-based

SNP discovery strategy has targeted gene discovery to genic

regions. Validation of a subset of these putative co-dominant SNP

assays and a comparison with dominant SNP markers has

provided useful insights into their design and characteristics.

Finally, the work described here has resulted in a significant

increase in the number of gene-derived co-dominant SNP assays,

which will be of considerable interest to wheat researchers, and in

particular, the breeding community.

Results

SNP discovery

In this study, the exome of the UK varieties Alchemy, Avalon,

Cadenza, Hereward, Rialto, Robigus, Savannah and Xi19 was

captured using the NimbleGen capture array (NimbleGen array

reference 100819_Wheat_Hall_cap_HX1) described in Winfield

et al. (2012). This generated between 9.8 and 48.7 million reads

on the Illumina GAIIx platform. Sequence data were filtered as

described in the experimental procedures. Varietal SNPs were

called in the filtered data where read coverage was sufficiently

high that there was less than a 0.1% chance of an observed allelic

difference between two varieties being due to failure to sample

an allele. For example, if the varieties Avalon and Cadenza have

observed calls of A(20) and A(10)G(10), respectively, we would

expect half of the alleles in Avalon (10 calls) to be G under the null

hypothesis that there is no real genotypic difference. Randomi-

sation tests showed that for the data set as a whole, using a

minimum expected count of 10 for null bases resulted in a false

discovery rate of < 1%. Putative co-dominant SNP markers were

identified as the subset of SNPs meeting the above criteria, but

where every variety had only a single allele called. The SNP

discovery pipeline identified 95 266 putative varietal SNPs in

26 551 distinct reference sequences (Winfield et al., 2012).

Examination of these SNPs suggested that as in our previous

work, only 10%–20% were co-dominant (Table 1; Allen et al.,

2011), with 10 251 putative co-dominant SNP markers identified

within 5308 contigs.

Co-dominant SNP validation

As co-dominant SNP assays are of significant interest to the wheat

community, it is important that such assays have a level of

polymorphism that is not significantly different to that previously

shown for dominant SNP assays. In addition, it is important that

the distribution of the co-dominant SNP markers across the three

homoeologous genomes do not show a bias beyond those shown

previously for mapped dominant SNP markers (Allen et al., 2011).

To assess both of these features, we selected a subset of 1337

putative co-dominant SNP assays for validation and further

analysis. While the selection process used to identify this subset

was essentially random, to aid further investigation, we selected

those SNPs that appeared, via the sequence analysis, to be

polymorphic between the parents of the UK mapping populations

Avalon 9 Cadenza and Savannah 9 Rialto. Of the 1337 SNPs

selected, we were able to design working KASPar assays for 1190

SNPs (89%; Data S1).

Genotyping of a panel of 47 wheat varieties using the 1190

KASPar probes resulted in 1138 probes (96%) generating data

that could be scored consistently and were polymorphic in at least

one of the varieties screened (Data S2). Examination of the

genotypic data revealed three types of varietal SNP markers:

co-dominant SNP markers (where homozygous scores were

detected for all hexaploid varieties, for instance, only scores of

A:A or T:T were obtained, Figure 1a); partially co-dominant SNP

markers (where heterozygous and homozygous scores were

detected in hexaploid varieties, that is, A:A, T:T and the mixed A:

T, Figure 1b); and dominant SNP markers (where a single

homozygous and heterozygous score was detected in hexaploid
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varieties, that is, A:A and mixed A:T only, Figure 1c). Of the 1138

validated probes, 734 (65%) were co-dominant, 194 (17%) were

partially co-dominant and 210 (18%) were dominant. Dominant

and co-dominant markers were used to screen an F4 population

known to contain homozygote and heterozygote individuals.

Screening this population with co-dominant SNP assays resulted

in three separate clusters for the various homozygote and

heterozygote individuals (Figure 1d). However, screening the

same population with dominant SNP assays produced a more

scattered cluster where homozygous and heterozygous loci were

indistinguishable (Figure 1e). Screening the F4 population with

partially co-dominant SNPs yielded the same results as described

for both dominant and co-dominant SNP assays depending on

the genotypes of the population parents (data not shown).

The SNP markers developed through the NimbleGen exome

capture were compared with the existing database of SNP

markers developed from EST and normalised cDNA sequences

using the experimental procedures described in Allen et al., 2011;

(Table 2; Data S3). The number of co-dominant SNP assays

generated was significantly higher, and dominant SNPs signifi-

cantly lower, when compared with the previous data set of

validated EST/cDNA-derived SNPs (v2 = 131.98, P < 0.001).

Comparison of the two data sets showed that the numbers of

partially co-dominant SNP assays were not significantly different

between the two data sets (v2 = 3.87, P = 0.14). In addition, the

polymorphism information content (PIC) scores and minor allele

frequencies (MAF) were similar between the two data sets; they

were highest for the partially co-dominant SNP assays and lowest

for the dominant SNP assays.

Characterisation of the different SNP types

To characterise the different SNP marker types identified in

this study, and in particular, the co-dominant and partially

co-dominant SNP assays, several analyses were performed using

the contig sequences containing the SNPs. The average sizes of

contigs containing different SNP types were similar (co-dominant,

692 bp; dominant, 690 bp; partially co-dominant, 666 bp). We

hypothesised that co-dominant SNP assays were likely to be

derived from 5′ or 3′ untranslated regions (UTRs) of genic

sequences. In the absence of functional coding constraints, such

regions are more likely to have diverged between homoeologs

and thus represent effectively unique regions of sequence. To

address this hypothesis, SNP-containing contig sequences were

used to screen, via BLASTX (Altschul et al., 1990), the non-

redundant (nr) protein database. If a match was found (E-value

1e-5), a further analysis was then performed to identify whether

the SNP was located inside or outside the coding region. This

analysis showed that a higher proportion of the contig sequences

used to develop co-dominant SNP assays returned no hit when

subjected to a BLASTX analysis against the nr database, compared

with dominant SNP assay sequences. Where a hit was identified,

a higher proportion of the co-dominant SNPs were found to lie

outside the coding region, compared with dominant SNPs. The

number of co-dominant SNPs located within known coding

(a) (b) (c)

(d) (e)

Figure 1 KASPar plots of different varietal SNP

types screened against a panel of hexaploid wheat

varieties with examples of (a) a co-dominant SNP

assay, (b) a partially co-dominant SNP assay and

(c) a dominant SNP assay. Screening an F4
population containing heterozygotes with a

co-dominant SNP assay results in a separate

cluster for heterozygote individuals (d). Screening

the same population with a dominant SNP assay

produces a more scattered cluster where

homozygote and heterozygote individuals are

indistinguishable.

Table 1 Summary of next-generation

sequence data and SNPs identified for eight

wheat varieties
Variety

No. of

sequences

(million)

No. mapped

reads (million)

No. of SNPs

(compared with

Avalon)

No. of co-dominant

SNPs (compared

with Avalon)

Proportion of total

SNPs that are

co-dominant (%)

Avalon 27.2 10.9 N/A N/A N/A

Alchemy 44.4 16.9 22 092 2558 11.6

Cadenza 20.2 4.9 8909 1550 17.4

Hereward 41.0 15.2 13 379 2399 17.9

Rialto 30.4 11.8 15 141 2662 17.6

Robigus 31.4 6.3 10 823 2114 19.5

Savannah 48.7 16.8 18 648 2818 15.1

Xi19 9.8 2.9 4391 899 20.5

ª 2012 The Authors

Plant Biotechnology Journal ª 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd, Plant Biotechnology Journal, 11, 279–295

Wheat exome-based co-dominant SNPs 281



regions was significantly lower than would be expected to occur

by chance (v2 = 7.56, P = 0.02). Partially co-dominant SNPs were

midway between dominant and co-dominant SNPs (Figure 2a).

Across all SNP marker types, the average length of contigs

returning no hit was lower (approximately 520 bp) than the

average length of contigs returning BLASTX hits (approximately

770 bp), suggesting that contig length affected the likelihood of

obtaining a BLASTX match. To check whether the contigs

returning no hit represent genes that had not yet been

annotated, the same contig sequences were subjected to a

BLASTN analysis (E-value 1e-3) against the NCBI nr nucleotide

database; 86% of the contigs returning no hit from the BLASTX

analysis also had no match in the BLASTN nr database.

We further hypothesised that some co-dominant SNP assaysmay

have been derived from single-copy regions of the wheat genome.

Such regions may have either been unique to only one progenitor

genome or alternatively one or more copies have been lost since

polyploidisation. To address this second hypothesis, the same sets

of sequences were screened, using BLASTN, against the 5 9

Chinese Spring genomic raw reads at http://www.cerealsdb.uk.

net/. BLAST hit coverage was calculated for every nucleotide

position in the query sequence and averaged over the whole

sequence to derive a mean contig coverage. All three SNP types

peak in coverage at 15 9 , indicative of three gene copies each at

5 9 coverage; however, the co-dominant SNPs and to a lesser

extent the partially co-dominant SNPs had a secondary peak of

coverage at fivefold coverage, indicative of single-copy number

sequences. This peak is absent from the dominant SNPs (Figure 2b).

These analyses were combined by comparing the coverage of

sequences containing co-dominant SNPs that had different

BLASTX results. The sequences with 5 9 coverage are most

highly represented by those returning a ‘no hit’ from BLASTX

analysis (Figure 2c). When contig length was plotted against

median coverage for co-dominant SNPs, no relationship was

observed (r = �0.0009). A similar result (r = �0.0009) was

obtained by performing the same analysis using only sequences

returning no BLASTX hit, suggesting that the contig length does

not affect the number of hits returned from the BLASTN analysis

or the estimated level of coverage.

Map location of dominant, partially co-dominant and
co-dominant SNP assays

The map positions of the different SNP marker types were

investigated to determine whether any bias in genetic location

was introduced by using co-dominant SNP assays in two doubled-

haploid mapping populations developed from UK cultivars

Avalon 9 Cadenza (A 9 C) and Savannah 9 Rialto (S 9 R). Of

the 3214 SNP markers developed to date (Table 2), 2109 were

identified as polymorphic between Avalon and Cadenza (via

screening of the 47 varieties above), of which 1807 were placed

on the Avalon 9 Cadenza map. These consisted of 1152 EST/

cDNA-derived markers and 655 NimbleGen-derived markers. Of

the remaining 1105 SNP assays not polymorphic between Avalon

SNP type

Validated

NimbleGen

SNPs (%)

Validated

EST/cDNA

SNPs (%)

Total validated

SNPs

Average minor

allele frequency

Average

PIC score

Dominant 210 (19) 1195 (58) 1407 0.249 0.273

Partially

co-dominant

194 (17) 437 (21) 632 0.315 0.315

Co-dominant 734 (64) 444 (21) 1175 0.270 0.287

All SNPs 1138 2076 3214 0.270 0.286

PIC, polymorphism information content.

Table 2 Summary of validated SNPs
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Figure 2 Characteristics of sequences containing dominant, partially

dominant and co-dominant SNP types. (a) BLASTX analysis against the

non-redundant (nr) protein database and (b) BLASTN against the 5 9

Chinese Spring raw reads. (c) Coverage of sequences containing

co-dominant SNPs against the 5 9 Chinese Spring raw reads classified

according to the BLASTX designation in (a).
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and Cadenza, 562 were identified as polymorphic between

Savannah and Rialto and 541 of these markers were placed on

the Savannah 9 Rialto map. These consisted of 187 EST/cDNA-

derived markers and 375 NimbleGen-derived markers. To enable

comparisons between the maps, 231 evenly spaced loci from

the Avalon 9 Cadenza map were also included on the

Savannah 9 Rialto map (Figure 3; Data S3). For the Ava-

lon 9 Cadenza map, previously mapped SSR markers were used

to help assign linkage groups to chromosomes (http://www.wgin.

org.uk/resources/MappingPopulation/TAmapping.php; Data S4).

In total, 2350 (73%) of the validated SNP markers were mapped;

these comprised of 969 dominant SNP loci, 444 partially

co-dominant loci and 937 co-dominant SNP loci. In the Ava-

lon 9 Cadenza map, the linkage groups ranged from 54.5 to

239.0 centiMorgans (cM) in size, with 8–214 SNP markers. The

total map length was 2434.4 cM with an average spacing of

1.3 cM between SNP loci. In the Savannah 9 Rialto map, linkage

groups ranged from 1.3 to 221.1 cM, with 2–98 SNP markers.

The total Savannah 9 Rialto map length was 2861.8 cM with an

average spacing of 3.8 cM between SNP loci (Table 3). The two

linkage maps aligned well with each other, showing similar

arrangements of common loci within linkage groups.

In both populations, over 97.5% of the SNP markers could be

mapped unequivocally to a linkage group and assigned to a

unique chromosome position. The lack of markers on the short

arm of chromosome 1B in the Savannah 9 Rialto map can be

attributed to the presence of the same 1BL.1RS rye translocation

in both Savannah and Rialto, where the short arm of rye

chromosome 1B has replaced the short arm of wheat chromo-

some 1B (Figure 3). Clustering of SNP markers was observed in

both linkage maps, with 55% of A 9 C markers and 61% of

S 9 R markers being completely linked (0 cM distance between

them). Of the remaining markers, 81% of A 9 C markers are

separated by < 5 cM and 90% are within 10 cM of the next

marker. For the S 9 R map, these figures are lower (55%markers

separated by < 5 cM and 74% within 10 cM), probably due to a

smaller number of markers on the map. Similar levels of clustering

were observed for the different SNP marker types; 60% of A 9 C

co-dominant markers and 52% of dominant markers were

completely linked. Of the remaining co-dominant markers, 77%

of markers are within 5 cM of each other and 88% are within a

10 cM interval. The corresponding proportions for dominant

markers are similar (84% within 5 cM and 92% within

10 cM).The different SNP types showed similar patterns of

distribution between the A, B and D linkage groups in both the

Avalon 9 Cadenza and Savannah 9 Rialto maps, with the only

difference of a higher proportion of the partially co-dominant

markers mapped to the D genome (Figure 4a). Similarly, although

clustering of SNP markers was observed within the linkage

groups, there was no obvious bias of different marker types

(Figure 3).

Summary statistics of mapped loci

The summary statistics of mapped SNP markers were compared

to assess whether different marker types had varying levels of

polymorphism in the 47 varieties screened and to ensure that the

co-dominant SNP markers developed in this study would be

useful across a wide range of material. The mean MAF and levels

of genetic diversity of SNP markers were compared between the

different marker types and assigned genomes of the

Avalon 9 Cadenza and Savannah 9 Rialto maps (Table 4). These

summary statistics were very similar for both maps; however,

differences within the maps were observed. Partially co-dominant

SNP assays had the highest average MAF and PIC scores, and

dominant SNP assays had the lowest. Loci from the separate

homoeologous genomes had consistent MAF and PIC measure-

ments, although the A and D genome measurements were

slightly higher than the B genome (Table 4). The different classes

of SNP loci showed differences in the distribution of MAF scores.

Co-dominant and partially co-dominant loci showed an increased

proportion of medium and high frequency alleles compared with

dominant loci (Figure 5a). Similarly, D genome loci showed a

trend to have higher MAF compared with A and B genome loci

(Figure 5b). The distribution of PIC scores showed that co-

dominant and partially co-dominant loci types had a higher

proportion of high PIC scores than dominant SNP assays

(Figure 5c). A and B genome loci had a similar distribution of

PIC scores, while D genome loci had a comparatively higher

proportion of high PIC scores (Figure 5d).

Discussion

In this study, we present a SNP discovery pipeline capable of

identifying large numbers of putative SNPs from genomic

sequence obtained by targeted exome capture. This proved an

efficient method to generate equivalent sequences from multiple

varieties from which we were able to generate over 90 000

putative SNPs between eight elite UK cultivars. Given our results,

this same approach is likely to prove highly effective at

identifying SNPs across a wide range of cultivars, and in a

wider range of germplasms, such as landraces, progenitors and

alien species. By cataloguing SNPs using a reference collection of

sequences derived from just the wheat exome, we provide a

unique context for each SNP, thereby both reducing the chance

of duplications within the SNP data set and allowing direct

comparisons between different wheat lines. A key advantage to

the SNP collection described here compared with other SNP

markers such as insertion site–based polymorphisms (ISBPs; Paux

et al., 2010) is that by the nature of the targeted sequencing,

all the SNPs developed are associated with genes, and as

such, are likely to prove useful in gene-based marker-assisted

breeding.

When examined further, the SNP database was shown to

contain 10 251 putative co-dominant SNPs. Validation of over

10% of the co-dominant SNP assays on the KASPar genotyping

platform resulted in a significantly improved validation rate

compared with our previous study with 96% being polymorphic

between the varieties screened compared with 67% as described

in Allen et al. (2011). This increased validation rate is probably

due to the use of genomic DNA, as opposed to transcriptome-

derived data, in the SNP discovery phase where the problems of

expression differences and presence of intron–exon splice sites

hindered effective SNP identification and primer design (Trick

et al., 2012). Of the subset of putative co-dominant SNP

assays, over 80% were validated as co-dominant or partially

co-dominant, compared with < 20% in previous studies where

random SNPs were validated (Allen et al., 2011). The occurrence

of putative co-dominant SNP assays, which were dominant when

validated, is likely to be due to the presence of homeologous

sequences that were not represented in the sequence data but

were amplified by the KASPar primers. This may be due to a

feature of individual sequences that prevent them from mapping

on to the assembly or a consequence of reduced sequence

coverage.
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AxAA C_1A SxR_1RR A
XBS00010592 XBS00010791
XBS00022505 XBS00003831
XBS00011608 XBS00001634
XBS00022650 XBS00010076
XBS00003930 XBS00003880
XBS00003911 XBS00003917
XBSXX 00010032 XBSXX 00010106

D1_RxSD1_CxAxxB1_RxSB1_CxAxx

XBS00010488

XBS0XX 0023118

XBS0XX 0022361
XBXX S00010128 XBS0XX 0001635
XBS00004382 XBS0XX 0010039

XBS0XX 0010267
XBS00022271 XBS0X 0022285

XBXX S00010488
XBS00000713 XBS00004528
XBS00005272 XBS00022506
XBS00022677 XBS00022759
XBS00022770 XBS00023176
XBS00000742 XBS00022355
XBS00022483 XBS00022566
XBS00023130 XBS00023167
XBS00023201

XBS00009466
XBS00003691
XBXX S00012226 XBXX S00022997
XBX S00010128

XBS00010508 XBS00010868
XBS00011695 XBS00011961

XBS00022310
XBS00022702 XBS00022973
XBS00022102 XBS00023102

XBS00023177
XBS00022294 XBS00022101

XBS00003684
XBS00011641 XBS00022030

XBS00022135
XBS00022247 XBS00022687
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Figure 3 Genetic linkage maps of wheat derived from 190 Avalon 9 Cadenza doubled-haploid lines and 95 Savannah 9 Rialto doubled-haploid

lines. Each linkage group was assigned to a chromosome indicated above the linkage group, and chromosomes are arranged with the short arm

above the long arm. SNP loci mapped in this study are designated XBS and are coloured according to the SNP type: Dominant SNP loci are shown in

black, co-dominant SNP loci are shown in red and partially co-dominant SNP loci are shown in blue. Common markers between the Avalon 9 Cadenza

and Savannah 9 Rialto maps are underlined. Map distances, calculated using the Kosambi mapping function, are shown in centiMorgans (cM) on the

ruler to the left of linkage groups.
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Figure 3 Continued
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Characterisation of the validated co-dominant SNP assays

showed that their PIC scores and MAF were on average higher

than dominant SNP assays, suggesting they are highly useful

genetic markers for use on a range of materials. Analyses using

the contig sequences containing the different SNP types revealed

that co-dominant SNP assays were more likely to be located in

contigs returning no BLAST hit to either protein or nucleotide

databases, or outside coding regions in those contigs returning a

BLASTX hit. Our analysis is consistent with the hypothesis that a

proportion of the contigs used to develop co-dominant SNP

assays represent single-copy genes. These contigs most likely

represent genes that were lost before or during the domestication

process as they are found as single copies in both landraces, such

as Chinese Spring, and modern varieties. For those SNP contigs

with 15 9 Chinese Spring genomic coverage, it is quite possible

that while these are represented as three homoeologs in Chinese

Spring, they have undergone gene loss down to single copy in the

UK germplasm we have studied. Intracultivar heterogeneity has

been documented between elite inbred lines of crop species, and

there are reports of intervarietal gene loss in wheat (Haun et al.,

2011; Swanson-Wagner et al., 2010; Winfield et al., 2012).

In addition to the factors outlined above, the Chinese Spring

reference used to map the NimbleGen-captured sequences was

based upon cDNA. If only one homoeolog was sampled in the

cDNA data, and this was sufficiently divergent from the other two

homoeologous copies, we may have only been able to map

Illumina sequence data to that single genome. This would be the

case in many 3′ UTR regions that are more divergent than protein-

coding sequence and have diverged sufficiently during evolution

to preclude their co-amplification in the KASPar PCR. This

homoeolog-specific amplification could fortuitously lead to the

development of co-dominant markers, yet BLAST analysis of such

sequences against the Chinese Spring genome would show them

to be present in three copies. In summary, investigations into the

average copy number of sequences used to develop co-dominant

SNP assays and the location of the SNP in the sequence suggests

that these SNPs are likely to reside in single-copy genes of as yet

unknown function, and/or three-copy genes which are suffi-

ciently divergent that sequence data from one homoeolog does

not map to other copies. The uncharacterised nature of these

genes makes them an exciting and intriguing source of further co-

dominant markers and scientific investigation.

Table 3 Summary of linkage groups and

mapped loci

Chromosome

Avalon 9 Cadenza map Savannah 9 Rialto map

Number of

bristol SNP

loci

Size

(cM)

Average

spacing between

loci (cM)

Number of

bristol SNP

loci

Size

(cM)

Average

spacing

between loci (cM)

1A 89 74.8 0.8 68 143.4 2.1

1B 214 126.4 0.6 50 115.9 2.3

1D 57 116.2 1.6 15 104.1 6.9

2A 82 132.2 1.6 98 211.1 2.2

2B 118 129.4 1.1 91 221.7 2.4

2D 63 77.7 1.2 13 49.8 3.8

3A 86 107.6 1.3 55 194.3 3.5

3B 136 154.5 1.1 34 205.0 6.0

3D 11 66.7 6.1 2 72.3 36.2

4A 71 136.3 1.9 14 157.7 11.3

4B 87 94.4 1.1 12 23.9 2.0

4D 8 60.3 7.5 4 1.3 0.3

5A 93 162.7 1.7 64 223.8 3.5

5B 172 239.0 1.4 51 147.2 2.9

5D 38 95.0 2.5 19 194.6 10.2

6A 136 141.1 1.0 23 111.4 4.8

6B 105 120.2 1.1 37 158.6 4.3

6D 31 91.6 3.0 28 135.6 4.8

7A 103 171.0 1.7 48 200.2 4.2

7B 64 82.8 1.3 14 56.1 4.0

7D 29 54.5 1.9 13 133.8 10.3

Total 1793 2434.4 1.3 753 2861.8 3.8

A genome 660 925.7 1.4 370 1241.9 3.4

B genome 896 946.7 1.1 289 928.4 3.2

D genome 237 562 2.2 94 691.4 7.4

Group 1 360 317.4 0.8 133 363.4 2.7

Group 2 263 339.3 1.3 202 482.6 2.4

Group 3 233 328.8 1.4 91 471.6 5.2

Group 4 166 291 1.8 30 182.9 6.1

Group 5 303 496.7 1.6 134 565.6 4.2

Group 6 272 352.9 1.3 88 405.6 4.6

Group 7 193 308.3 1.6 75 390.1 5.2
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During this study, we have created two complementary genetic

maps, enabling 73% of our validated SNPs to be assigned a map

location. The co-dominant SNP loci had a similar pattern of

distribution between linkage groups compared with dominant

loci, suggesting that co-dominant SNP markers have a similar

distribution to the previously used dominant markers. Analysis of

the MAF and PIC scores of the different types of mapped SNPs

demonstrated that the co-dominant and partially co-dominant

SNP markers had higher levels of genetic diversity within the lines

tested, compared with dominant SNP assays, suggesting that co-

dominant SNP assays are highly suitable for use as genetic

markers.

The two genetic maps aligned well with each other, with a

similar assignment and order of common markers. Clustering of

SNP markers was observed in both linkage maps, indicating that

despite the relatively large mapping populations used, a lack of

recombination events between these markers may affect map

resolution. This may be overcome by mapping these markers

against a larger number of individuals. Preliminary results indicate

that mapping a subset of 223 evenly spaced A 9 C markers on

566 individuals from an extended A 9 C population reduced the

proportion of completely linked markers from 50.4% to 44.9%,

and it is likely that this figure could be further decreased by

specifically targeting clustered markers. However, despite the

high proportion of clustered markers, 89% of the remaining

markers map to within 10 cM of the next marker, suggesting that

these provide good overall coverage of the genome, with few

gaps. When co-dominant and dominant markers were compared

separately, similar proportions of markers were observed to map

to within 10 cM of each other (88% and 92%, respectively),

suggesting that both marker types are similarly distributed across

the map.

Both maps had a relatively low proportion of D genome loci;

this has been observed in previous studies and is likely to relate to

a lower level of diversity found in the D genome due to the effects

of the genetic bottleneck that accompanied the domestication of

hexaploid wheat (Allen et al., 2011; Caldwell et al., 2004; Chao

Table 4 Summary statistics for mapped loci

Number of

loci

Minor allele

frequency

Polymorphism

information content

Avalon 9 Cadenza

mapped loci

1793 0.264 0.284

Co-dominant loci 672 0.277 0.290

Partially co-dominant

loci

332 0.308 0.313

Dominant loci 789 0.235 0.266

A genome 660 0.263 0.284

B genome 896 0.260 0.283

D genome 237 0.278 0.288

Savannah 9 Rialto

mapped loci

753 0.284 0.299

Co-dominant loci 395 0.291 0.300

Partially co-dominant

loci

213 0.319 0.323

Dominant loci 145 0.246 0.280

A genome 370 0.290 0.305

B genome 289 0.272 0.290

D genome 94 0.294 0.305
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Figure 4 Distribution of the different marker types across the (a) A, B and D linkage groups and (b) homoeologous chromosome groups of the

Avalon 9 Cadenza and Savannah 9 Rialto genetic maps.
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et al., 2009). Although the mean MAF and PIC scores were

similar for A, B and D genome loci, some differences were

observed in the distributions of these measurements. The results

for A and B genome markers were similar; however, loci assigned

to the D genome had a higher proportion of high MAF and PIC

scores compared with A and B genome loci. This is the opposite

to what has been detected in previous studies (Akhunov et al.,

2010; Chao et al., 2009) and suggests that, although the lower

genetic diversity within the D genome hinders SNP discovery and

marker development, the D genome SNPs identified by our

pipeline are as informative and useful as loci from the A and B

genome.

This study has described the design, implementation and val-

idation of a pipeline designed to identify gene-based co-dominant

SNP assays from genomic DNA sequence data. The validation

results suggest that this approach is highly efficient and the

resulting co-dominant SNP markers are evenly distributed across

the genome with relatively high MAF and PIC scores. As such,

these should prove a highly valuable resource for use in breeding

programmes. The construction of two complementary genetic

maps has maximised the amount of mapped SNP loci and allowed

comparisons between UK breeding materials. The genotype data

generated in this study for 47 widely used wheat lines, combined

with genetic map locations for SNP markers, should enable wheat

researchers to target their efforts to regions of interest and enable

QTL studies and marker-assisted selection. The markers described

in this study will be useful in linking the genetic map with the

developing physical maps and so will enhance the possibility of

efficient map-based cloning in hexaploid wheat. The entire data

set presented in this study has been made publicly available via

the provision of supplementary data sets and an interactive

website (http://www.cerealsdb.uk.net/), to make this resource as

accessible and useful as possible. These new co-dominant wheat

SNP-based markers will be useful on a number of genotyping

platforms and germplasm collections and hence should be a

powerful new tool for wheat breeders and researchers alike. In

addition, the pipeline developed here to identify co-dominant

SNP markers should be applicable to other polyploid crops where

SNP discovery and marker development have previously been

challenging (Cordeiro et al., 2006; Trick et al., 2009; Yu et al.,

2012).

Experimental procedures

Plant material

Forty-seven wheat varieties were grown for DNA extraction (for

details see Data S5). The Avalon 9 Cadenza doubled-haploid

(DH) population was supplied by the John Innes Centre and was

developed by Clare Ellerbrook, Liz Sayers and the late Tony

Worland as part of a Defra-funded project led by ADAS. The

parents were originally chosen (to contrast for canopy architec-

ture traits) by Steve Parker (CSL), Tony Worland and Darren Lovell

(Rothamsted Research). The Savannah 9 Rialto DH population

was supplied by Limagrain UK Limited (Woolpit, Suffolk, UK). All

plants were grown in pots in a peat-based soil and maintained in

a glasshouse at 15–25 °C under a light regime of 16 h light and

8 h dark. Leaf tissues were harvested from 6-week-old plants and

immediately frozen on liquid nitrogen and stored at �80 °C until

nucleic acid extraction. Genomic DNA was prepared from leaf

tissue using a phenol–chloroform extraction method (Sambrook

et al., 1989).

Preparation of NimbleGen libraries

The NimbleGen capture array was designed to capture a significant

proportion of the wheat exome and was developed using a gene-

rich assembly of 454 titanium sequence data from normalised and

non-normalised cDNA libraries of Chinese Spring line 42, publically

available EST sequences and the NCBI unigene set (Winfield et al.,

2012). The resulting assembly was used by NimbleGen to design an

array containing 132 605 features with an average length of

426 bp (NimbleGen array reference 100819_Wheat_Hall_-

cap_HX1). NimbleGen sequence libraries were prepared for eight

wheat varieties (Alchemy, Avalon, Cadenza, Hereward, Rialto,

Robigus, Savannah and Xi19) as described by Winfield et al.

(2012). Post-capture-enriched sequencing libraries were subjected

to 110 bp of paired end sequencing on a Illumina Genome
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Figure 5 Distribution of minor allele frequency

(MAF) and polymorphism information content

(PIC) scores among the 47 wheat varieties. Loci

were separated into subgroups according to (a,c)

marker type and (b,d) genome.
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Analyser (GAIIx) using Illumina TruSeq v5 Cluster Generation

(Illumina Inc., San Diego, CA) and sequencing reagents following

the manufacturers preparation guides for paired end runs (Part

15019435 RevB, Oct2010 and Part 15013595 Rev C, Feb 2011,

respectively).

SNP discovery

After pre-processing of reads, where adapter sequences were

removed, the data were submitted to a custom pipeline (Winfield

et al., 2012). NGS sequences generated from the eight varieties

were mapped to the NimbleGen array reference using BWA

version 0.5.9-r16 (Li and Durbin, 2009) with a seed length of 32

bases, and the resulting SAM files were used for downstream

analysis. Uniquely mapped reads were analysed using a series of

custom PERL scripts designed to identify only differences between

varieties as opposed to those between each variety and the

reference sequence. This enabled the exclusion of homoeologous

SNPs (which are not useful markers), which were removed from

the SNP discovery pipeline. SNPs were called where there were at

least two alternative bases predicted at a reference position. An

additional constraint on SNP prediction required each SNP to be

represented by two or more independent reads or 2% of all reads

examined (whichever was the greater). Only bases that were

located at the centre of a three-base window of PHRED

quality � 20 were included in the analysis. Sequences were

discarded if they displayed more than 10% sequence variation

from the reference over their length or if they mapped equally

well to more than one locus, as the mapping in these situations

could be regarded as uncertain. In cases where multiple reads

started at the same position in the reference, all but one were

ignored to guard against clonal reads being sampled more than

once. All NGS data generated for this study will be available at:

http://www.cerealsdb.uk.net. In addition, the Illumina fastq files

and associated metadata have been uploaded to NCBI Sequence

Read Archive (SRA) under the study accession SRP011067.

Accession numbers of fastq files for each variety are as follows:

Alchemy (SRR417586.1), Avalon (SRR417587.1), Cadenza

(SRR417953.1), Hereward (SRR417954.1), Rialto (SRR417955.1),

Robigus (SRR418209.1), Savannah (SRR418210.1) and Xi19

(SRR418211.1).

SNP validation

For each putative varietal SNP, two allele-specific forward primers

and one common reverse primer (Data S1) were designed

(KBioscience, Hoddesdon, UK). Genotyping reactions were per-

formed in a Hydrocycler (KBioscience) in a final volume of 1 lL
containing 1 9 KASP 1536 Reaction Mix (KBioscience), 0.07 lL
assay mix (containing 12 lM each allele-specific forward primer

and 30 lM reverse primer) and 10–20 ng genomic DNA. The

following cycling conditions were used: 15 min at 94 °C; 10

touchdown cycles of 20 s at 94 °C, 60 s at 65–57 °C (dropping

0.8 °C per cycle); and 26–35 cycles of 20 s at 94 °C, 60 s at

57 °C. Fluorescence detection of the reactions was performed

using a Omega Pherastar scanner (BMG LABTECH GmbH,

Offenburg, Germany), and the data were analysed using the

KlusterCaller 1.1 software (KBioscience).

Genetic map construction

The software programme MapDisto v. 1.7 (Lorieux, 2012) was

used to place the SNP markers in the previously established

genetic map for Avalon 9 Cadenza (http://www.wgin.org.uk/

resources/MappingPopulation/TAmapping.php). A chi-square test

was performed on all loci to test for segregation distortion from

the expected 1 : 1 ratio of each allele in a DH population, and any

loci showing significant distortion were removed from the data

set before constructing the linkage groups. Loci were assembled

into linkage groups using likelihood odds (LOD) ratios with a LOD

threshold of 6.0 and a maximum recombination frequency

threshold of 0.40. The linkage groups were ordered using the

likelihoods of different locus-order possibilities and the iterative

error removal function (maximum threshold for error probability

0.05) in MapDisto and drawn in MapChart (Voorrips, 2002). The

Kosambi mapping function (Kosambi, 1944) was used to calcu-

late map distances (cM) from recombination frequency.

SNP data analysis

Summary statistics (MAF and PIC estimates) were calculated for

loci using Powermarker 3.25 software (Liu and Muse, 2005).
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